Menu

Search Program/Discipline

  • Results for SLO Disciplines>

Search Courses

  • Results for SLO Disciplines>

Student Learning Outcomes

Discipline: Degree: AS - Applied Laboratory Science Technology - S0307
Course Name Course Number Objectives
General Chemistry I CHEM 50
  • Chem 50 students will be able to demonstrate an understanding of oxidation-reduction concepts, such as: a. Determining oxidation numbers b. Identifying redox reactions c. Determining the oxidizing and reducing agents in a chemical reaction d. Classifying half-reactions as oxidation or reduction
  • Chem 50 students will be able to demonstrate an understanding of stoichiometric principles, such as: a. Mole-to-mole conversions b. Mole-to-mass conversions c. Mass-to-mass conversions d. Identifying limiting reactant e. Calculating the theoretical yield f. Calculating the amount of excess reactant
  • Chem 50 students will be able to demonstrate an understanding of solution chemistry such as: a. calculating molarity b. making dilutions c. performing stoichiometric calculations.
  • Chem 50 students will be able to demonstrate an understanding of oxidation-reduction concepts, such as: a. Determining oxidation numbers b. Identifying redox reactions c. Determining the oxidizing and reducing agents in a chemical reaction d. Classifying half-reactions as oxidation or reduction
  • Chem 50 students will be able to demonstrate an understanding of solution chemistry such as: a. calculating molarity b. making dilutions c. performing stoichiometric calculations.
  • Students completing relevant assignments in Area B courses will evaluate the impact of science on their daily lives. This assessment deals with dilutions.
  • Chem 50 students will be able to demonstrate an understanding of solution chemistry such as: a. calculating molarity b. making dilutions c. performing stoichiometric calculations.
  • Chem 50 students will be able to demonstrate an understanding of solution chemistry such as calculating molarity, making dilutions, and performing stoichiometric calculations.
  • Chem. 50 students will be able to demonstrate an understanding of oxidation-reduction (redox) chemistry such as calculating oxidation numbers, identifying a redox reaction, finding oxidizing and reducing agents, and recognizing oxidation and reduction half-reactions of a redox reaction.
  • Students completing relevant assignments in Area B courses will evaluate the impact of science on their daily lives
General Chemistry I - Honors CHEM 50H
  • Chem 50H students will be able to demonstrate an understanding of solution chemistry such as calculating molarity, making dilutions, and performing stoichiometric calculations.
  • Chem 50 students will be able to demonstrate an understanding of solution chemistry such as: a. calculating molarity b. making dilutions c. performing stoichiometric calculations.
  • Chem 50H students will be able to demonstrate an understanding of stoichiometric principles, such as: a. Mole-to-mole conversions b. Mole-to-mass conversions c. Mass-to-mass conversions d. Identifying limiting reactant e. Calculating the theoretical yield f. Calculating the amount of excess reactant
  • Chemistry experiment and laboratory report: Determine the enthalpy of 2 different chemical reactions by preparing, experimenting, calculating, and reporting chemical results properly, using critical thinking in offering suggestions on how to improve results in further experimentation.
  • Chem 50H students will be able to record measurements from common laboratory devices to the proper precision of each device.
  • Chem 50H students will be able to; a. predict a compound?s water solubility, b. predict a compound?s water reaction and electrolyte classification, c. predict single and double replacement reaction products including, neutralization, gas formation and, d. identify the net ionic equation for a reaction
General Chemistry II CHEM 51
  • Chem 51 students will be able to; a. Examine and predict the common ion effect on an equilibrium b. Recognize buffer a solution c. Determine pH of a buffer solutions d. Determine pH of a buffer solution upon addition of a strong acid or base. e. Determine chemical quantities needed in order to prepare a buffer solution.
  • By using the concept of Le Chatelier’s Principle, students will be able to a. predict the effect that causes the reaction to shift toward products in a gas phase reaction initially at equilibrium. b. predict the correct effect of different stresses on a gas phase reaction at equilibrium c. predict the correct effect of adding a substance that reacts with a component in the equilibrium system of a slightly soluble salt that was used in the “Review of Equilibrium Systems” experiment d. predict the correct effect (by color of solution) from adding common ion in the aqueous phase equilibrium system used in the “Review of Equilibrium Systems” experiment e. predict the correct effect (by color of solution) from adding a substance that reacts with a component in the equilibrium system used in the “Review of Equilibrium Systems” experiment. The questions focused on determining the direction of shift of a reaction upon adding a variety of stresses to a system at equilibrium. Some of the questions related directly to experiences that they had in several lab experiments.
  • By using the concept of Le Chatelier’s Principle, students will be able to a. predict the effect that causes the reaction to shift toward products in a gas phase reaction initially at equilibrium. b. predict the correct effect of different stresses on a gas phase reaction at equilibrium c. predict the correct effect of adding a substance that reacts with a component in the equilibrium system of a slightly soluble salt that was used in the “Review of Equilibrium Systems” experiment d. predict the correct effect (by color of solution) from adding common ion in the aqueous phase equilibrium system used in the “Review of Equilibrium Systems” experiment e. predict the correct effect (by color of solution) from adding a substance that reacts with a component in the equilibrium system used in the “Review of Equilibrium Systems” experiment. The questions focused on determining the direction of shift of a reaction upon adding a variety of stresses to a system at equilibrium. Some of the questions related directly to experiences that they had in several lab experiments
  • SLO on Common Ion Effect and Solubility Product Constant (Ksp) focused on the following measureable objectives: 2. Write equilibrium expression for reversible chemical systems. Calculate the equilibrium position, value of the equilibrium constant, and concentrations of all components of the system. 3. Apply Le Chatelier's Principle to systems at equilibrium to predict responses to stresses on the systems. The questions focused on determination of solubility, understanding the concept of Ksp, and the effects of the common ion effect on solubility. Some of the questions related directly to experiences that they had in several lab experiments.
  • Students completing relevant assignments in Area B courses will evaluate the impact of science on their daily lives. The Chem 51 GEO assessment question for Fall 2012 dealt with solubility equilibria and Le Chatelier?s Principle
  • Chem 51 students will be able to a. examine and predict the effect of common ions on an aqueous equilibrium system b. recognize a buffer solution c. determine pH of a buffer solution d. determine pH of a buffer solution upon addition of a strong acid or base e. determine Kb from a corresponding Ka or vice versa f. determine chemical quantities needed in order to prepare a buffer solution of given pH and acid or base concentration
  • Chem 51 students will be able to a. determine the equilibrium constant expression (Law of Mass Action) when given a balanced chemical equation b. relate the magnitude of the equilibrium constant to the general position of the equilibrium c. determine the value of the equilibrium constant when given concentrations of reactants and/or products and the equilibrium expression d. apply stoichiometric principles to determine concentrations of reactants and/or products (simple algebraic or quadratic equation method) when given initial conditions, the value of the equilibrium constant, and the equilibrium expression e. apply Le Chatelier's Principle to an equilibrium system to predict the shift in equilibrium position when reaction conditions of concentration, temperature, or volume are changed
  • Students completing relevant assignments in Area B courses will evaluate the impact of science on their daily lives
  • Chem 51 students will be able to determine the order, rate law, and rate constant of a chemical equation based on a. Initial rates vs concentration data and b. Graphical analysis of concentration vs time data
  • SLO on Buffers focused on the following course measurable objective: Prepare buffer solutions of a given pH and molarity and predict the response of the buffers to additions of acids and bases. Outcomes (SLO statement): Chem 51 students will be able to: a. Define and identify a buffer solution b. Determine the pH of a buffer solution c. Predict the change in pH of a buffer solution upon addition of a strong acid or base d. Determine the chemical quantities needed in order to prepare a buffer solution of given pH and acid or base concentration
  • Outcomes (SLO statement): Chem 51 students will be able to: a. Define and identify a buffer solution b. Determine the pH of a buffer solution c. Predict the change in pH of a buffer solution upon addition of a strong acid or base d. Determine the chemical quantities needed in order to prepare a buffer solution of given pH and acid or base concentration
  • Chem 51 students will be able to a. Define and identify a buffer solution b. Determine the pH of a buffer solution c. Predict the change in pH of a buffer solution upon addition of a strong acid or base d. Determine the chemical quantitates needed in order to prepare a buffer solution of given pH and acid or base concentration
  • Chem 51 students will be able to a. examine and predict the effect of common ions on an aqueous equilibrium system b. examine and predict the effect of common ions on an aqueous equilibrium system as applied to the Solubility Procudt Constant (Ksp) Experiment c. predicting degree of solubility based on solubility product constants d. calculating the value of the solubility of a solution containing a common ion The questions focused on determination of solubility, understanding the concept of Ksp, and the effects of the common ion effect on solubility. Some of the questions related directly to experiences that they had in several lab experiments.
  • Student will be able to understand kinetics
Interpersonal Communication SPCH 26
  • Students will evaluate their self concept.
  • Students will analyze the relationship between social, political, and/or economic institutions and human behavior.
  • Students will examine the relationship between culture and communication.
  • Students will be able to formulate suitable conflict management strategies for interpersonal conflict.
  • Students will improve their interpersonal listening skills.
  • Students will feel more confident.
  • Students will demonstrate meaningful self-evaluation related to increasing their lifelong personal well being.
Interpersonal Communication - Honors SPCH 26H
  • Students will analyze the relationship between social, political, and/or economic institutions and human behavior.
  • Students will examine the relationship between culture and communication.
  • Students will be able to formulate suitable conflict management strategies for interpersonal conflict.
  • Students will improve their interpersonal listening skills.
  • Students will demonstrate meaningful self-evaluation related to increasing their lifelong personal well being.
  • Students will evaluate their self concept.
  • Students will feel more confident.
Introduction to Ethics PHIL 12
  • Students will be able to analyze primary texts in ethics. (Rev. 6/2020)
  • Students will be able to apply moral reasoning to contemporary ethical issues and moral problems. (Rev. 6/2020)
  • Students will be able to analyze major philosophical schools of thought, including Virtue Ethics, Deontological Ethics, and Utilitarianism. (Rev. 6/2020)
  • Students will be able to analyze the ideas of the major moral philosophers. (Rev. 6/2020)
Introduction to Ethics - Honors PHIL 12H
  • Students will be able to analyze major philosophical schools of thought, including Virtue Ethics, Deontological Ethics, and Utilitarianism. (Rev. 6/2020)
  • Students will be able to apply moral reasoning to contemporary ethical issues and moral problems. (Rev. 6/2020)
  • Students will be able to analyze primary texts in ethics. (Rev. 6/2020)
  • Students will be able to analyze the ideas of the major moral philosophers. (Rev. 6/2020)
Introductory Organic and Biochemistry CHEM 20
  • Students completing relevant assignments in Area B courses will evaluate the impact of science on their daily lives
  • Classify biomolecules as lipids, carbohydrates, proteins, or nucleic acids. Identify the function of biomolecules in living systems. Identify the locations, steps, and products involved in metabolic pathways. Identify the locations, steps, and products involved in gene expression.
  • Classify organic molecules based on functional groups Differentiate constitutional isomers from cis-trans isomers (stereoisomers) Relate the physical properties of organic molecules to their structure Propose and name the products of organic chemical reactions
  • Classify organic molecules based on functional groups Differentiate constitutional isomers from cis-trans isomers (stereoisomers) Relate the physical properties of organic molecules to their structure Propose and name the products of organic chemical reactions
  • Classify biomolecules as lipids, carbohydrates, proteins, or nucleic acids. Identify the function of biomolecules in living systems. Identify the locations, steps, and products involved in metabolic pathways. Identify the locations, steps, and products involved in gene expression.
  • Students completing relevant assignments in Area B courses will evaluate the impact of science on their daily lives. The topic of this assessment is the application of intermolecular attractions to biological systems.
  • Students will be able to: Describe the fate of proteins that enter the body. Describe what happens to the excess amino acids in the body? Describe the ultimate fate of the nitrogen atoms from excess amino acids? Describe TWO different possible fates of the carbon skeletons from excess amino acids.
  • Given a segment of DNA, students will be able to: 1. Identify which strand is used for transcription and draw the primary structure of the mRNA produced in the transcription underneath the strand. 2. Write the sequence of polypeptide that will be produced from the DNA. 3. Clearly describe the effect on the protein chain when a base pair is mutated.
  • CHEM 20 students will be able to: • Predict the products of replication. • Predict the product of transcription. • Predict the product of translation from a given sequence of DNA. • Predict changes in the translation product that would result from mutation in the DNA sequence.
  • CHEM 20 students will be able to: • Predict the products of replication. • Predict the product of transcription. • Predict the product of translation from a given sequence of DNA. • Predict changes in the translation product that would result from mutation in the DNA sequence.
Microbiology MICR 22
  • Perform aseptic transfer techniques and interpretations of laboratory results.
  • Students are able to demonstrate aseptic techniques that are appropriate for the allied health fields.
  • Analyze, using student’s own experimental design, effective hand washing.
  • Demonstrate how to properly use the compound light microscope, as well as know its parts, their functions, how to safely transport and clean it.
  • Perform basic microbiology lab procedures using appropriate PPE required for this laboratory course.
  • Demonstrate safe handling and proper hazardous waste disposal procedures for microorganisms and chemicals used.
  • Explain the dynamics of host-parasite interaction.
  • Diagnose specific diseases on the basis of symptoms and laboratory test results.
  • Explain the basic features of every group of microorganisms.
  • Describe the physiology and genetic processes of microorganisms.
  • Apply physical and chemical methods of controlling microorganisms.
Principles of Continuous Quality Improvement BUSM 10 (VOC)
  • I am able to describe describe and explain the quality management tools and techniques for process improvement
  • I am able to contrast quality management theory and previous management thought
  • I am able to define and outline the key principles of continuous quality management